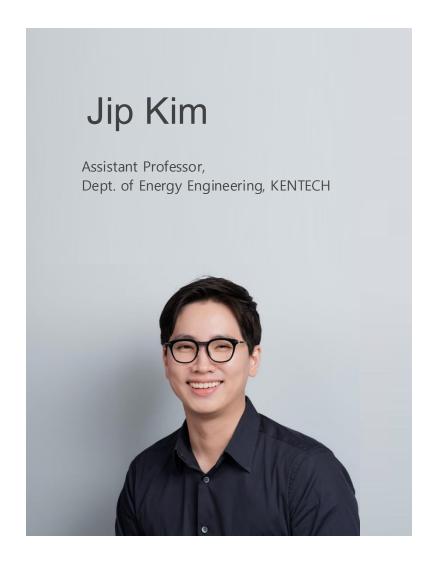
Advanced Grid Modelling (AGM) Center for Korea's Energy Transition:

Building an Open Analytical Foundation for Decarbonization

2025.10.30


Jip Kim

Assistant Professor | Department of Energy Engineering Korea Institute of Energy Technology (KENTECH)

About me

Experience

- Director, Advanced Grid Modelling (AGM) Centre, KENTECH, 2025-present
- Assistant Professor, Dept. of Energy Engineering, KENTECH, 2022-present
- Postdoctoral Research Scientist, Dept. of Electrical Engineering, Columbia University 2021-2022

Education

- Ph.D. in Electrical Engineering, New York University, 2021
- M.S. in Electrical Engineering & Computer Science, Seoul National University, 2014
- B.S. in Electrical & Electronic Engineering, Yonsei University, 2012

Main Activities

- KEPCO Grid Modernization Forum Committee Member, 2024-present
- KIEE Planning Policy Committee Member, 2023-present
- KIEE Active Distribution System and DER Working Group Member, 2023-present
- KPX Real-time Unit Commitment Advisory Board Member, 2023-present
- KPX Energy and Future Research Committee Member, 2023-present
- NEXT Group Advisory Board Member , 2022-present
- IEEE Power & Energy Society Member, 2012-present

Korea's Ambitious Renewable Target by 2030

- Ministry of Climate, Energy and Environment established on October 1st, 2025
 - Objective: to integrate climate and energy policies and accelerate Korea's energy transition
 - The ministry set a national target of **100GW of renewable energy capacity by 2030**
- However, Korea's rapid renewable expansion is outpacing grid infrastructure capacity

renewable enact Carbo	hwan vows expand energy to 100GW and on Neutral Industry
Act	
By Ahn So-young Updated 2025.10.01.13:41 V	
	대한민국단면소 독기문병(대)병(k-(X) 기후에너지환경부 출범식 교육교육원 독대왕(대) 기후에너지환경부 출범식

Fig. Government's 100GW renewable energy target announcement [1]

Fuel type	GW
Coal	40.22
LNG	46.33
Nuclear	26.05
Pumped hydro storage	4.70
Solar	27.10
Wind	2.24
Hydro	1.80

Table. Power capacity of Korea (2024) [2]

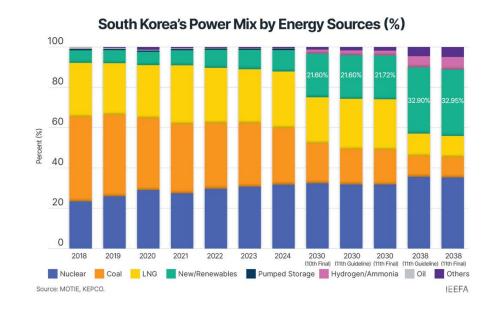


Fig. Korea's capacity mix by energy sources (2018-2038) [3]

Critical Barriers in Energy Transition

Transmission Expansion Bottleneck

Chronic delays and social resistance hinder timely grid reinforcement,
 worsening congestion and <u>renewable curtailment</u>

Declining System Inertia and Stability Challenges

Growing shares of inverter-based renewables reduce rotational inertia,
 threatening system stability and increasing cascading failure risks

Politically-driven Planning System

 Planning prioritizes political interests over a balanced consideration of economics, reliability and environmental sustainability in power supply

Outdated Electricity Market Structure

The cost-based pool system fails to reflect true value and price signals,
 limiting investment and innovation

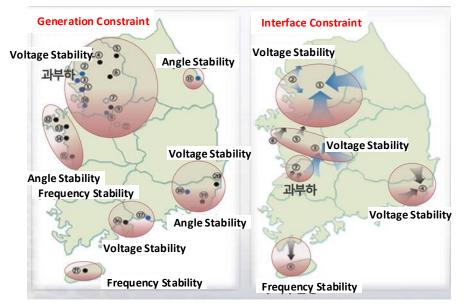


Fig. Korea's system constraints [4]

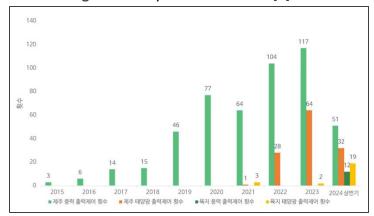
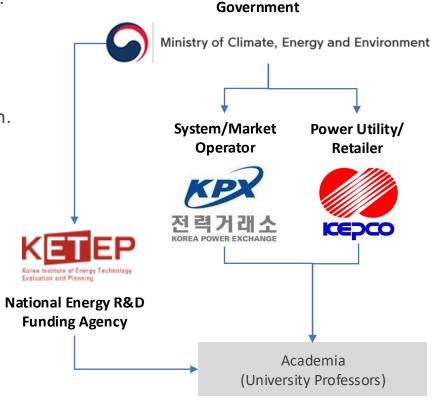


Fig. Korea's wind and solar curtailment events.

Jeju wind (green), Jeju solar (orange),

Mainland wiod (dark green),

Mainland solar (yellow) [8]


Why model-based, data-driven decision-making remains difficult in Korea?

- Fragmented and Episodic Decision-Making
 - Policy decisions are often made through ad-hoc working groups, formed temporarily when issues arise.
 - No permanent analytical body or open repository exists to ensure continuity of knowledge.
 - Each new administration reconstitutes committees, resetting discussions.
- Lack of Transparency and Open Data
 - Analytical results and grid data are not publicly accessible, limiting independent verification.
 - Stakeholders even researchers cannot trace how decisions were made.
 - As a result, trust and technical accountability remain low.

Incentive-Driven Expert Ecosystem

- Professors and experts are often invited based on alignment with policy preferences, not methodological rigor.
- Disagreement discourages future participation in committees or project funding.
- This dynamic weakens the role of academia as a neutral analytical voice.
 - Current decision structure: ad-hoc, closed, and non-reproducible.

Advanced Grid Modelling (AGM) Centre's Mission

Empowering Korea's energy transition through open-source grid modelling and collaborative stakeholder engagement

Advanced Grid Modelling (AGM) Centre

- Founded on May 20, 2025
- AGM Research Centre addresses technical and market barriers through:

Advanced & Reproducible Modelling

- Mathematical representation of grid physics and market structure with DERs
- Modelling VRE uncertainty with Probabilistic Modelling
- Enabling reproducibility by using open data and transparent methodology

Open Discussion between Stakeholders

- A hub for fostering dialogue and collaboration among diverse stakeholders
- Aim to facilitate shared understanding and meaningful exchanges between the system operator (KPX) and the sole power utility (KEPCO)

Professional Education for Practitioners

- Training programs tailored to the needs of key stakeholders (KPX, KEPCO)
- Offer public online tutorials regarding
 - Power system modelling
 - Electricity Market
 - Open-source models of AGM Centre

Why Academic Institutions are Essential for Model-Based Energy Policy

Academia as a Neutral Analytical Ground

- Academic institutions are free from market or political interests, providing a trusted and balanced space for discussion.
- We can host model-based, fact-based dialogues among utilities, system operators, regulators, and civil society.
- This neutrality allows **stakeholders to exchange evidence**, not positions essential for rational policymaking.

About Korea Institute of Energy Technology (KENTECH)

- Foundation: May 21, 2021
- Established under the Special Law of the Korean National Assembly to lead the nation's clean-energy transition through technology, policy, and innovation.
- The first university solely dedicated to energy research and technology.

Fig. KENTECH campus

Institutional Strength for AGM Research Centre

- Embedded within KENTECH's energy transition ecosystem, enabling active engagement with policymakers and energy stakeholders
- Supported by strong research networks with national institutes and industry, driving open collaboration and grid innovation
- Along with KENTECH's model-based and data-driven research culture, promoting rigorous and reproducible energy system analysis

Advanced Grid Modelling (AGM) Research Centre

Our Vision

"An open platform where reproducible grid analysis shapes the path toward a sustainable and resilient power system."

Our Goal

- Advance power system analysis and modelling capabilities across Korea's energy sector
- Bridge collaboration among policymakers, industry, and academia
- Build a modelling-based cooperative ecosystem

What we do

- We provide open, reproducible test systems & power system models
- We provide open Discussion Hub for grid stakeholders
- We provide tutorials on power system modelling and electricity market

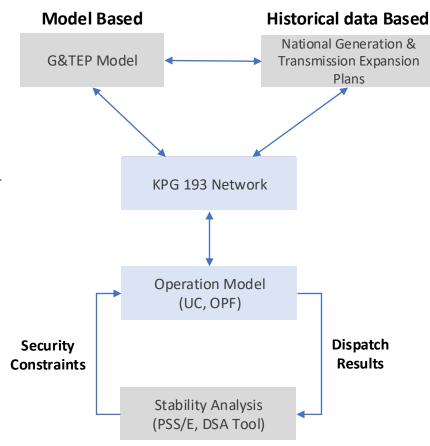
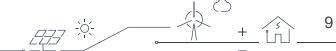
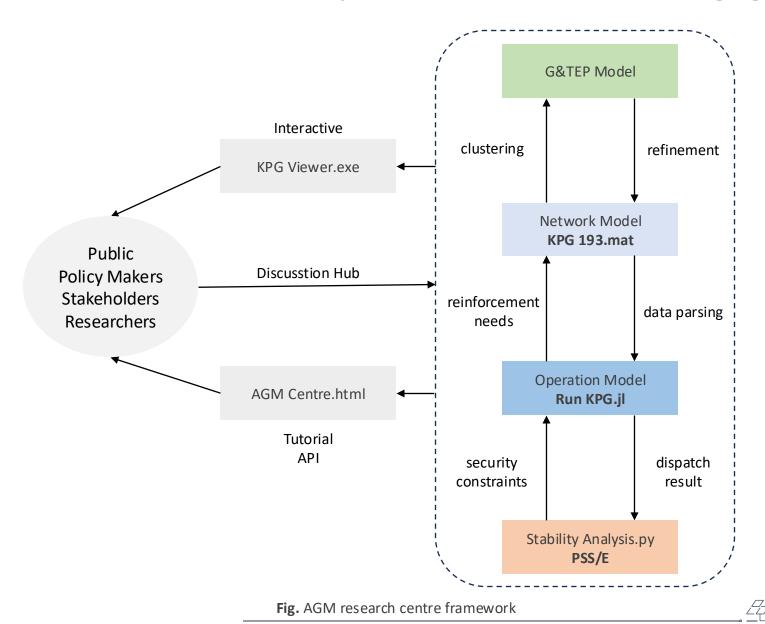
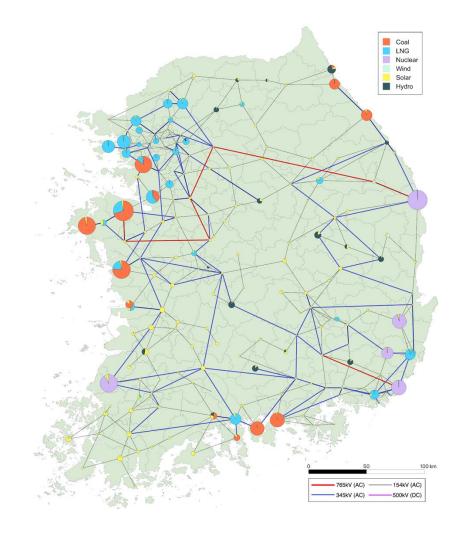




Fig. Open-source model overview


AGM Centre Framework: From Open Models to Public Engagement

Development of Open-source Models

- Korean Power Grid (KPG) 193 test system
 - A synthetic test system of the 2022 Korean power system
 - Based <u>only on publicly available data</u>
 - Provides comprehensive datasets for power system analysis:
 - KPG 193 network(Ver 1.4) comprises
 - 1. 193 buses
 - 2. 122 conventional generators
 - 3. 359 transmission lines
 - Renewable generation capacities
 - 8760-hour profiles for demand and renewables
 - Capacity Mix of KPG 193

	Coal	LNG	Nuclear	Solar	Hydro	Wind	Total
Capacity [GW]	38.13	41.20	24.65	23.75	7.20	1.65	136.57
Share [%]	27.9%	30.2%	18.0%	17.4%	5.3%	1.2%	100%

Fig. Network topology and generation mix for KPG 193. Pie charts indicate the generation mix by fuel type, with sizes reflecting relative generation capacities

Development of Grid Models

Power system operation model

- Cost-effectively optimizes generators' schedules (on/off status) and dispatch decisions, while ensuring grid reliability
- Key models:
 - ED (Economic Dispatch)
 - UC (Unit Commitment)
 - OPF (Optimal Power Flow)

(2025.09.24) Grid Modelling Collaboration Day with NEXT group

- Discussed alignment of KPG 193 and NEXT's OPEN model under "OPEN Grid Initiative"
- Significance
 - First collaborative effort to establish integrated national power system modelling in Korea
 - Discussed model integration, public accessibility and dfd to ensure transparency and sustainability
 - Set the foundation for joint validation and comparative studies between planning and operational models

Fig. Grid modelling collaboration day

Strategic Partnership and Stakeholder Engagement

- (2025.06.30) Strategic MOU with Korean Electric Power Corporation (KEPCO)
 - Partnership with KEPCO's Division for National Transmission Expansion Planning
 - Key Commitments under the MOU
 - Receive practical feedback from KEPCO engineers on open-source models and analytical results
 - Access non-confidential grid data for model verification and refinement
 - Facilitate active participation of KEPCO practitioners in workshops and Discussion Hub

(2025.10.16) Discussion Hub with KEPCO

- Shared the advancement of the KPG 193 model and discussed future development direction
- Significance
 - KEPCO recognized open-source models as an platform for transparent discussion
 - Confirmed KEPCO's preference for trend-based analysis and periodic public insights

Fig. KEPCO-KENTECH MOU Signing for AGM Research Centre

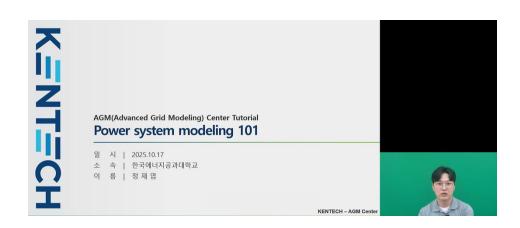


Fig. AGM Research Centre Discussion Hub

Major Activities for the Remaining Project Period

- Empowering practitioners through education (Q4 2025, Q1 2026)
 - Provide professional power system modelling and electricity market education to utilities, system operator and researchers
 - Provide publicly accessible model, online tutorials and educational contents to foster broad participation in open-source grid modelling
- Online showcasing and publication (Q1 2026)
 - Publish a comparative report between open-source and commercial tools to inform stakeholders on performance and transparency
 - Launch an online exhibition presenting practical use cases with interactive and replicable examples

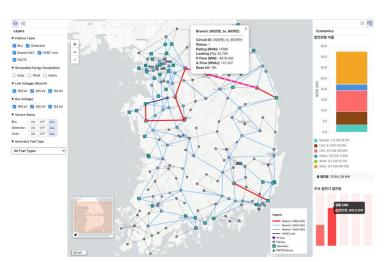


Fig. Viewer app: ViewKPG

Next Steps and Roadmap

Building an integrated modelling ecosystem

- Develop multi-layered models by region and analysis domain (Planning / Operation / Stability)
- Ensure data interoperability across planning, operation, and stability analysis models
- Establish a standardized simulation and data environment for reproducible analysis

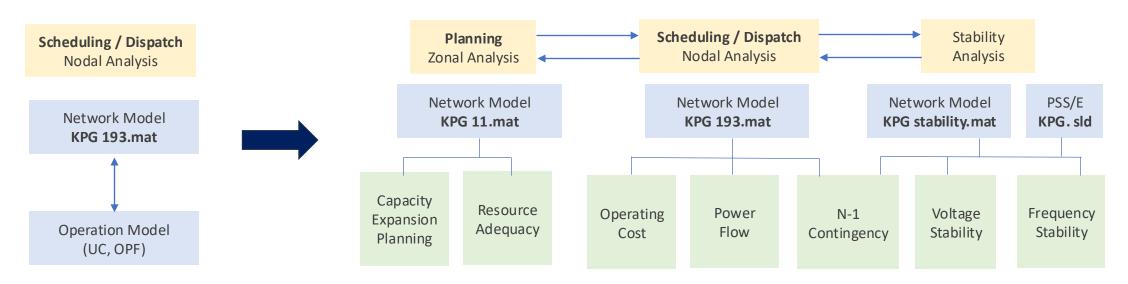


Fig. Roadmap for integrated grid modelling framework

Next Steps and Roadmap

Korean Grid Annual Analysis

- Publish annually to present quantitative trends in Korea's power system operation and planning
- Based on publicly available data to ensure policy-neutral and transparent analysis
- Building a common analytical ground for industry, academia and policymakers
- Topic Examples :
 - Grid stability trends under increasing renewable penetration
 - Regional electricity price dynamics under different market structures (LMP/SMP)

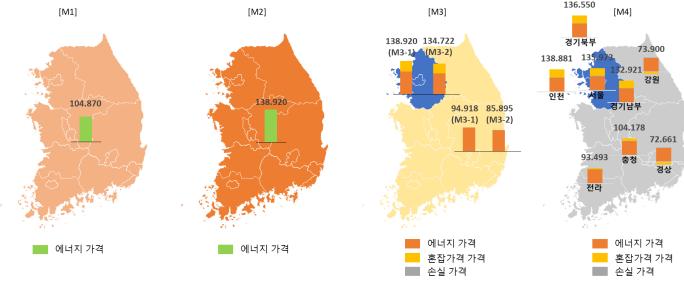


Fig. Regional electricity price under SMP (left) and LMP (right)

Next Steps and Roadmap

Power system planning model

- Development of transmission expansion planning & generation expansion planning models
- Methodological groundwork for long-term transmission planning
 - Referencing international long-term power system planning practices (e.g. FERC Order 1920, DOE National Transmission Planning Study)
 - Cf. FERC Order 1920 mandates a 20-year regional transmission planning horizon, integrating regional, interregional and local planning

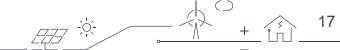
Year	OPEN-EGO model development scope		
Year 1 System operation	Power	Economic Dispatch (ED)	
	Optimal Power Flow (OPF)		
	operation	Unit Commitment (UC)	
Following years	G&TEP	Generation Expansion Planning (GEP)	
		Transmission Expansion Planning (TEP)	
		• +α	

Table. Scope of OPEN-EGO Model Development

FERC Order No. 1920: How does the long-term regional transmission planning cycle work?

This diagram illustrates Order 1920's long-term regional transmission planning process, which is separate from and will occur after the compliance process. The diagram illustrates the main planning stages for the new long-term regional transmission planning requirements based on the development of scenario using a set of 7 planning factors, quantifying the benefits of proposed transmission facilities, and taking in state input on project selection for compliance filings.

Scenario development using 7 factors


State consultation & add'l scenarios

Identification of needs & facilities

Benefits calculations

Project selection

Fig. FERC Order 1920's long-term regional transmission planning process [10]

Thank you for your attention!

Jip Kim

Assistant Professor, Institute for Grid Modernization

Korea Institute of Energy Technology (KENTECH)

email: jipkim@kentech.ac.kr

webpage: https://egolab.kentech.ac.kr

